US-Japan Workshop 2004

"New directions and physics for compact toroids"

La Fonda Hotel. Santa Fe. NW. USA Sep./14-16/2004

n=1 Mode Motion on Field Reversed Configuration Plasmas

Speaker: Tsutomu Takahashi

Tsutomu Takahashi, Masanori Okada, Toshiyuki Fujino, Hiroshi Gota, Tomohiko Asai, and Yasuyuki Nogi

College of Science and Technology, Nihon University

Background (n=1 mode motion)

n=1mode motion of plasma column

A field-reversed configuration (FRC) plasma deviates from its equilibrium position and moves slowly around it at an equilibrium phase.

$$r_s(z, \boldsymbol{q}) = r_{s0}(z) + \boldsymbol{x}(z) \exp(i(\boldsymbol{w}t - n\boldsymbol{q})) \quad \boldsymbol{w} = \boldsymbol{w}_r + i\boldsymbol{g}$$

 $\xi(z)$ =const : **shift motion** Rotational mode: **wobble motion**

 $\xi(z)=\psi z$: tilt motion

Effect of the n=1 mode motion

- Low reproducibility on a translation experiment (FIX, FRX-C/T)
- Particle loss from X-points
- Low efficiency on a neutral particle beam heating

•Physics issue

Source and Driving Mechanism

• Technology issue

Control method
a multipole field (NUCTE)
a neutral beam injection (FIX)

Purpose of this subject

A source of the n=1 mode motion is investigated from the point view of a magnetic structure of the confinement field.

Contents

- 1. Magnetic Structure of the confinement field for a field reversed configuration
- 2. Experimental set up
- 3. Experimental results
 - •Behavior of n=1 mode motion
 - •Source of n=1 mode
- 4. Summary

1. Structure of Magnetic Field for FRC

Structure of Magnetic Field in q-Pinch Coil

Lines of magnetic force

Radial distribution of <u>magnetic</u> <u>field strength averaged along the</u> <u>line of magnetic force</u>

$$\Delta = \frac{\P}{\P r} \left(\frac{\overline{B}}{\overline{B}_{w}} \right) \approx \frac{\overline{B}(r_{w}) - \overline{B}(r_{s})}{\overline{B}(r_{w})} \frac{r_{w}}{r_{w} - r_{s}}$$

Radial gradient of the averaged Field

Magnetic Structure w/o and with FRC Plasma

 $rac{\overline{B}}{\overline{B}_{\!W}}$

w/o FRC Plasma

with FRC plasma

 $(l_s=37.5cm, r_s=5.0cm)$

Magnetic structure Δ

Magnetic field gradient at the outside of the separatrix is negative.

Plasma elongation, Mirror ratio, Coil aspect ratio

2. Experimental Set up

- 1. Installation of a conducting ring
- 2. Control of coil aspect ratio
- 3. Control of plasma elongation

- 1. Optical diagnostics
- 2. B_{θ} magnetic probe array

3. Typical Plasma Parameter w/o C. R.

Equilibrium Plasma Parameters

$$B_{\rm b}$$
=48mT
 $B_{\rm e}$ =0.5T
 $r_{\rm s}$ =0.057m
 $l_{\rm s}$ =0.33m
 $n_{\rm e}$ =2.1x10²¹m⁻³
 $T_{\rm i}$ + $T_{\rm e}$ =280eV
 $\boldsymbol{b}_{\rm s}$ =0.7
 $\boldsymbol{r}_{\rm i}$ =0.0041m, w =4
 $\boldsymbol{\tau}_{\rm life}$ =70 μ s
 $\boldsymbol{\tau}_{\rm onset}$ =35 μ s
 ω^* =4.2x10⁵rad/s
 $V_{\rm A}$ =170km/s (94km/s)

Typical Plasma parameter with C. R.

- All field lines are pulled out through the discharge tube from narrow regions near the coil ends due to the conducting rings.
- Closed field configuration is quickly formed at the coil ends as soon as the confinement field is applied.
- A long FRC is generated without tearing at the mirror regions.
- •Oscillation of r_s , l_s , and n_e decrease.
- •Life time will be prolonged
- •Onset of n=2 will be delayed
- •Improvement of symmetry for FRC formation

Observation of n=1 mode motion by visible optical diagnostics

x, y - axis

x-y profiles of line integrated light intensity at z=0

Trajectory of the Plasma column at z=0

After the *axial contraction*, n=1 mode motion is appeared

3-D trajectory of n=1 motion

Even mode (radial shift motion)

Dependence of x_m on averaged magnetic field gradient

 ξ_{m} increases with the radial gradient of the confinement field

Typical Trajectory of Plasma column (r_s =5.7cm, l_s =37.5cm)

combined

Radial oscillation

Radial oscillation

Rotation (counterclockwise)

Rotation(clockwise) (paramagnetic)

$$l_s/V_A \approx 2 \sim 4 \, \text{ms} \ll g^{-1} \approx (5 \sim 10) t_A$$

$$|\mathbf{w}_r|/\mathbf{w}^* \approx 1.0 \sim 1.5$$

$$|v_r\rangle |v_q|$$
 radial oscillation

$$v_r=1840 \text{ [m/s]} \quad v_r << |v_q| \quad Rotation$$

Estimation of the force acting on the plasma

k (center force) is ~1000 N/m (10N at $x_m = 0.01m$)

Relation between ξ_m and axial asymmetry

Relation between x_m and asymmetry at z=0

Relation between x_m and Axial asymmetry

Open symbol 6mTorr-2kV Closed symbol 4mTorr-2kV

Weak correlation between x_m and axial asymmetry

Mechanism of generation and saturation for n=1 mode motion

4. Summary

- 1. A source of n=1 mode motion is investigated from point view of a magnetic structure of a confinement field.
- The source of n=1 mode motion is related to an negative field gradient of a radial direction. With the increase of the negative gradient, the amplitude of the motion becomes large.
- The gradient is controlled by *a coil aspect ratio and a plasma elongation*.
- By *an installation of a conducting ring* at the end of theta pinch coil, the amplitude decreases.
- **Symmetry of a plasma formation** is also related to the appearance of n=1 mode motion.

2. **Behavior of n=1 mode motion** is also investigated.

- The trajectory of n=1 mode motion depicts different orbits, for example, *a radial oscillation*, *an elliptic (or circler)rotation and a combined orbit* dependent on the initial velocity.
- The direction of the rotation is not only *clockwise* but also *counterclockwise*.
- <u>The axial mode structure is even.</u> The odd mode motion can not be observed.

n=1 mode motion by B_{θ} field measurements

Axial dependence of B_q field

Odd mode of B_{θ} field

Even mode deformation of Plasma column

Mode Analysis of B_q field at z=-0.175m

n=1 *mode* B_{θ} is dominant mode during 15-25μs

Estimation of Trajectory by a center of force

$$m\left(\frac{d^2r}{dt^2} - r\left(\frac{d\mathbf{q}}{dt}\right)^2\right) = F_r = -kr$$

$$\frac{d}{dt}\left(mr^2\frac{d\mathbf{q}}{dt}\right) = F_q = 0$$

when $\frac{d\mathbf{q}}{dt} \approx const(F_{\mathbf{q}} \approx 0)$, from energy conservation

$$\frac{m}{2}\left(\left(\frac{dr(t)}{dt}\right)^{2} - \left(\frac{dr(0)}{dt}\right)^{2}\right) + \frac{k}{2}\left(r(t)^{2} - r(0)^{2}\right) - \frac{m}{2}\left(\left(r\frac{d\mathbf{q}}{dt}\right)^{2}\right) - \left(r\frac{d\mathbf{q}}{dt}\right)^{2}\right) = 0$$

$$\frac{dr}{dt} \approx 0 \text{ at a maximum of } r(t), \qquad \frac{m}{k} = \frac{\left(r(t)^2 - r(0)^2\right)}{\left(\frac{dr(t)}{dt}\right)^2 - \left(\frac{dr(0)}{dt}\right)^2}$$